首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   734篇
  免费   95篇
  国内免费   125篇
测绘学   7篇
大气科学   30篇
地球物理   203篇
地质学   141篇
海洋学   339篇
天文学   1篇
综合类   74篇
自然地理   159篇
  2024年   1篇
  2023年   14篇
  2022年   31篇
  2021年   36篇
  2020年   29篇
  2019年   30篇
  2018年   28篇
  2017年   22篇
  2016年   18篇
  2015年   30篇
  2014年   37篇
  2013年   39篇
  2012年   34篇
  2011年   38篇
  2010年   26篇
  2009年   51篇
  2008年   61篇
  2007年   33篇
  2006年   62篇
  2005年   46篇
  2004年   38篇
  2003年   36篇
  2002年   33篇
  2001年   37篇
  2000年   19篇
  1999年   20篇
  1998年   22篇
  1997年   10篇
  1996年   13篇
  1995年   8篇
  1994年   8篇
  1993年   9篇
  1992年   7篇
  1991年   4篇
  1990年   2篇
  1989年   3篇
  1988年   5篇
  1986年   1篇
  1985年   2篇
  1984年   1篇
  1983年   3篇
  1982年   2篇
  1980年   1篇
  1979年   1篇
  1978年   2篇
  1977年   1篇
排序方式: 共有954条查询结果,搜索用时 78 毫秒
91.
为了探讨不同鲜重秋茄胚轴的表型性状和营养成分含量差异, 及其对幼苗生长的影响, 确定浙江省秋茄胚轴质量标准, 提高造林质量, 本研究采集4.0~5.0g、5.0~6.0g、6.0~7.0g、7.0~8.0g、8.0~9.0g、9.0~10.0g共6组不同鲜重的秋茄胚轴, 测定其表型性状、营养成分含量和幼苗生长性状。结果表明, 胚轴长度、横径、顶径随着胚轴鲜重的增加而显著增加。不同鲜重等级胚轴间的氮(N)、磷(P)、钾(K)和有机碳百分含量差异不显著, 但随着秋茄胚轴鲜重增加, 淀粉百分含量显著减小。单根胚轴的营养成分总含量随胚轴鲜重的增加而显著增加。胚轴的C:N、N:P和C:P值在鲜重7.0~8.0g等级时均显著高于其他鲜重等级。幼苗生长高、基径、叶片数及生物量随胚轴鲜重的增加而显著增加, 但在5.0~6.0g、6.0~7.0g和7.0~8.0g等级间幼苗茎干重、叶干重、净生物量和总生物量差异不显著。胚轴表型性状与幼苗生长指标之间的相关性均呈显著水平(P<0.05), 除胚轴P总含量与生长高之间的相关性不显著外, N、K、Na、有机碳、淀粉总含量与幼苗生长指标之间均呈显著正相关关系(P<0.05)。主成分分析和综合评价结果表明鲜重7.0g以上的胚轴优于其他鲜重的胚轴。秋茄幼苗生长高和净生物量与胚轴鲜重的回归分析R2分别为0.978和0.951, P均小于0.01。胚轴鲜重大于5.22g时, 幼苗生长高急剧增加; 鲜重大于8.74g时, 幼苗净生物量增长加快。因此, 秋茄胚轴鲜重越大, 营养物质含量越高, 越有利于幼苗生长。在浙江省的秋茄林种植中, 应优先选择鲜重7.0g以上的胚轴。  相似文献   
92.
As terrestrial ecosystem carbon (C) sinks, plantation ecosystems play essential roles in species diversity protection, resource supply and climate change. Artificial afforestation is of great important in improving the ecological condition, economic development and production in Tibet. Forests can improve soil property changes, yet the understanding of how plantations influence soil C and nutrient conditions in Tibet is still insufficient. This review combines with previous studies to explore the characteristics of soil nutrients, involving nitrogen (N) and phosphorus (P) on Tibetan poplar plantations. Generally, plantations have better abilities in improving the soil C and N cycles, and enhancing the soil stability. In this review, we further analyze the factors, including the modality of land-use, afforested period, tree species, climate factors and soil properties, which may affect the soil C and nutrients. (1) The patterns of land-use affect the accumulation of soil organic matter, thus influence the accumulation of soil C and nutrients; (2) Soil C and N increase with the years of artificial forests, while soil P is on the contrary; (3) The effects of different tree species on soil C and nutrients vary widely; (4) In terms of climate, the C sink of Tibetan plantation soil is most likely to be affected by precipitation, while the nutrient is more likely to be influenced by temperature; (5) Among soil properties, the most related factor to C is soil texture. Furthermore, our review pointed out that future research on soil ecological functions should be focused on soil microbes on Tibet plantation. At the end, we concluded three major challenges for the future research. Therefore, this review contributes to a better understand the effects of plantation on soil C and nutrients on the Tibetan Plateau.  相似文献   
93.
Litter decomposition is the key process in nutrient recycling and energy flow. The present study examined the impacts of soil fauna on decomposition rates and nutrient fluxes at three succession stages of wetland in the Sanjiang Plain, China using different mesh litterbags. The results show that in each succession stage of wetland, soil fauna can obviously increase litter decomposition rates. The average contribution of whole soil fauna to litter mass loss was 35.35%. The more complex the soil fauna group, the more significant the role of soil fauna. The average loss of three types of litter in the 4mm mesh litterbags was 0.3–4.1 times that in 0.058mm ones. The decomposition function of soil fauna to litter mass changed with the wetland succession. The average contribution of soil fauna to litter loss firstly decreased from 34.96% (Carex lasiocapa) to 32.94% (Carex meyeriana), then increased to 38.16% (Calamagrostics angustifolia). The contributions of soil fauna to litter decomposition rates vary according to the litter substrata, soil fauna communities and seasons. Significant effects were respectively found in August and July on C. angustifolia and C. lasiocapa, while in June and August on C. meyeriana. Total carbon (TC), total nitrogen (TN) and total phosphorus (TP) contents and the C/N and C/P ratios of decaying litter can be influenced by soil fauna. At different wetland succession stages, the effects of soil fauna on nutrient elements also differ greatly, which shows the significant difference of influencing element types and degrees. Soil fauna communities strongly influenced the TC and TP concentrations of C. meyeriana litter, and TP content of C. lasiocapa. Our results indicate that soil fauna have important effects on litter decomposition and this influence will vary with the wetland succession and seasonal variation. Foundation item: Under the auspices of State Key Development Program for Basic Research of China (No. 2009CB421103), Key Program of National Natural Science Foundation of China (No. 40830535/D0101), Knowledge Innovation Programs of Chinese Academy of Sciences (No. KZCX2-YW-BR-16, KSCX2-YW-N-46-06)  相似文献   
94.
On the basis of the soil environment investigation in Da'an City, Jilin Province, China, 40 soil samples from main land use types were obtained and tested by standard method. Soil organic matter (SOM), total N (TN), total P (TP), total K (TK), available N (AN), available P (AP) and available K (AK) were chosen as the evaluation factors. A regional soil nutrient evaluation model was developed based on the matter-element model. The results show that the soil samples with nutrient grade Ⅱ-Ⅴ respectively account for 10%, 30%, 32.5% and 27.5%, and those with grade Ⅳ and Ⅴ account for 60% in all samples. The relationship between soil nutrients and land types indicates that the nutrients of farmland are relatively good, with 41.7% of soil samples with the nutrient grade Ⅳ and Ⅴ. The nutrients of saline-alkali land and sandy land are the worst, with 100% of soil samples with the nutrient grade Ⅳ and Ⅴ. And the ratios of soil samples grade Ⅳ and Ⅴ in grassland and wasteland are respectively 62.5 % and 54.55%. Generally speaking, the soil nutrients status in Da'an City is poor, 60% of soil samples are in poor and extremely poor conditions, indicating that the soil has been severely eroded. Being a relatively superior evaluation method with more accurate resuits and spatial distribution consistency, matter-element analysis is more suitable for regional soil nutrient evaluation than previous models.  相似文献   
95.
The variability of diatom distribution in an acidified, upland wind-stressed lake (Loch Fleet, Galloway, S. W. Scotland) was assessed by analysis of 28 surface sediment samples and 11 cores. Correspondence analysis (CA) and cluster analysis were used to illustrate the variability of the surface sediment and core samples. There was reasonable uniformity of taxa in most of the surface sediment samples, although 7 samples, as indicated by both CA and cluster analyses were atypical. Most cores recorded clearly the acidification of the lake, although percentages of individual taxa varied up to 20% between cores. Two cores had old, preacidification diatom assemblages (of indeterminate age) close to the sediment surface. These old sediments were probably the source of the re-worked diatoms found in the atypical surface sediment assemblages. Diatom trends, as CA ordinations and pH profiles, were less variable than the surface sediment assemblages. It is argued that non-uniform sediment accumulation rates and diatom deposition cause variability in surface sediment diatom samples. This variability may be reduced in core profiles by homogenization during further resuspension/deposition cycles and burial. Cores, and the associated time component they offer, may be useful in assessing the variability of surface sediment assemblages.  相似文献   
96.
The environmental problems in the Bohai Sea have become more serious in the last decade. High nutrient concentration contributes much to it. A Sino-German cooperation program has been carried out to improve the understanding of the ecosystem by observations and modelling. A three-dimensional ecosystem model, coupled with a physical transport model, is adopted in this study. The simulation for the year 1982 is validated by the data collected in 1982/1983. The simulated annual mean nutrient concentrations are in good agreement with observations. The nutrient concentrations in the bohai Sea, which are crucial to the algal growth, are high in winter and low in summer. There are depletion from spring to summer and elevation from autumn to winter for nutrients. The nutrients’ depletion is a response to the consumption of the phytoplankton bloom in spring. Internal recycle and external compensation affect the nutrient cycle. Their contributions to the nutrient budgets are discussed based on the simulated results. Production and respiration are the most important sink and source of nutrients. The process of photosynthesis consumes 152 kilotons-P and 831.1 kilotons-N while respiration releases 94.5 kilotons-P and 516.6 kilotons-N in the same period. The remineralization of the detritus pool is an important source of nutrient regeneration, It can compensate 23 percent of the nutrient consumed by the production process. The inputs of phosphates and nitrogen from rivers are 0.55 and 52.7 kilotons respectively. The net nutrient budget is −3.05 kilotons-P and 31.6 kilotons-N.  相似文献   
97.
INTRODUCTIONFromthe1990’s,thescallop,C.farreri,culturedinthenorthernChinaSea,deterioratedinsize,healthandoutputbecauseofhighstockingdensities,shortageofnaturalfoodanddiseases.Massmortalityof50%-90%occurredinJiaozhouBay,Qingdao,andSishiliwanBay,Yantai,fromJulyto…  相似文献   
98.
Transfort of oxygen,nutrients and carbonates by the Kuroshio Current   总被引:1,自引:0,他引:1  
Measured concentrations of dissolved oxygen, phosphate, silicate, total alkalinity and calculated total CO2 in a section between 121° E and 125° E across the Kuroshio near 22° N off Taiwan and the geostrophic velocity were used to estimate the gross transport of oxygen, nutrients and carbonates. The flux of dissolved oxygen is 6.7×106 mol/s northward and 0.9×106 mol/s southward. The net flux equals 5.8×106 mol/s down-stream. The northward flux of phosphate is 22.6×103 mol/s; the southward flux is 1.4×103 mol/s. The net phosphate flux is 21.2×103 mol/s northward. The flux of silicate is 967×103 northward and 59×103 mol/s southward; the net transport is 908×103 mol/s down-stream. The flux of alkalinity is 75.5×106 mol/s northward, and 10.8×106 mol/s southward, the net flux is 64.7×106 mol/s northward. For total CO2 the transport is 73.4×106 mol/s northward and 10.8×106 mol/s southward, or a net transport of 62.6×106 mol/s horthward.  相似文献   
99.
CHANGE OF NUTRIENT IMPORT AND EXPORT IN PROCESS OF RAINFALL IN AILAO MOUNTAIN OF YUNNAN PROVINCEGanJianmin(甘健民);XueJingyi(薛敬意...  相似文献   
100.
The concentrations of twenty four chemical elements in the surface layer of natural desert soils and the cultivated farmland soils were measured at a desert-oasis ecotone in the middle of Heihe river basin, north-west China. Background values were estimated for (a) major elements (Si 335.3 g kg− 1, Al 49.4 g kg− 1, Fe 19.1 g kg− 1, Ca 29.4 g kg− 1, Mg 8.9 g kg− 1, K 20.1 g kg− 1, Na 17.5 g kg− 1 and P 0.338 g kg− 1), (b) heavy metals and non-metals (Cr 55.8 mg kg− 1, Mn 404.8 mg kg− 1, Ni 17.7 mg kg− 1, Cu 5.1 mg kg− 1, Zn 33.7 mg kg− 1, Pb 15.5 mg kg− 1 and As 5.2 mg kg− 1) and (c) other trace elements (Ti 2.0 mg kg− 1, V 55.3 mg kg− 1, Co 5.7 mg kg− 1, Rb 82.4 mg kg− 1, Sr 232.9 mg kg− 1, Y 14.7 mg kg− 1, Zr 194.9 mg kg− 1, Nb 7.8 mg kg− 1 and Ba 720.6 mg kg− 1). After natural desert soil was cultivated for agricultural use, significant changes in element concentrations occurred under tillage, irrigation and fertilisation management. Compared to natural soil, the for the levels of Si, K, Na, Sr, Zr and Ba decreased, and no changes were observed for Rb, while the values of the other 17 elements increase in agricultural soil from 1.2 to 3.5 times. However, their absolute concentrations are still low, suggesting that the arable soil in this region remains comparatively a clean soil. The increased silt, clay and organic carbon content, under long-term irrigation, enriched the fine-grained materials, and application of fertilisers and manure contributed to the accumulation of most elements in arable soil. The accumulation of elements in agricultural soil increased with increasing cultivation years and extent of soil development.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号